Computational design of ligand binding membrane receptors with high selectivity
نویسندگان
چکیده
Accurate modeling and design of protein-ligand interactions have broad applications in cell biology, synthetic biology and drug discovery but remain challenging without experimental protein structures. Here we developed an integrated protein-homology-modeling, ligand-docking protein-design approach that reconstructs protein-ligand binding sites from homolog protein structures in the presence of protein-bound ligand poses to capture conformational selection and induced-fit modes of ligand binding. In structure modeling tests, we blindly predicted, with near-atomic accuracy, ligand conformations bound to G-protein-coupled receptors (GPCRs) that have rarely been identified using traditional approaches. We also quantitatively predicted the binding selectivity of diverse ligands to structurally uncharacterized GPCRs. We then applied this technique to design functional human dopamine receptors with novel ligand-binding selectivity. Most blindly predicted ligand-binding specificities closely agreed with experimental validations. Our method should prove useful in ligand discovery approaches and in reprogramming the ligand-binding profile of membrane receptors that remain difficult to crystallize.
منابع مشابه
Optimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors
To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...
متن کاملOptimum Conditions of Radioligand Receptor Binding Assay of Ligands of Benzodiazepine Receptors
To obtain drugs which are more selective at benzodiazepine (BZD) receptors, design and synthesis of functionally selective ligands for BZD receptors is the current strategy of our pharmaceutical chemistry department. The affinity of newly synthesized ligands is assessed by radioligand receptor binding assays. Based on our previous studies, 2-phenyl-5-oxo-7-methyl-1,3,4-oxadiazolo[a,2,3]-pyrimid...
متن کاملComputational modelling and molecular dynamics simulations of ligand-gated ion channels
The Cys-loop ligand-gated super family of ion channels and related proteins have been studied using computational methods. Ligand-gated ion channels (LGIC) are pentameric, neurotransmitter-gated, ion selective receptors which play a key role in synaptic transmission. The nicotinic acetylcholine receptor (nAChR) is the archetypal member of the LGIC family. Found at neuronal-neuronal synapses and...
متن کاملMolecular docking study of Papaver alkaloids to some alkaloid receptors
Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides l...
متن کاملSelectivity of ligand binding to opioid receptors in brain membranes from the rat, monkey and guinea pig.
Conditions for the equilibrium binding to opioid receptor of [3H]sufentanil (mu selective), [3H][D-Pen2,D-Pen5]enkephalin (delta selective), and [3H]U69,593 (kappa selective) were established in membranes from rat brain cerebrum, monkey cortex, or guinea pig cerebellum. The selectivity index of various opioid alkaloids and peptides in binding to the mu, delta, or kappa opioid receptors was expr...
متن کامل